Introduction to Lattice Theory with Computer Science Applications

Product Number: EB00622440
Released: Sep 15, 2015
Business Term: Purchase
ISBN: #9781119069713
Publisher: Wiley
Please log in to view pricing


A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author's intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: -Examines; posets, Dilworth's theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory -Provides end of chapter exercises to help readers retain newfound knowledge on each subject -Includes supplementary material at Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.

Author(s): Vijay K. Garg
Genre: Science
Original Publish Date: Jun 10, 2015

Sign up for our email newsletter